The Reconstruction of Convex Polyominoes from Horizontal and Vertical Projections
نویسنده
چکیده
The problem of reconstructing a discrete set from its horizontal and vertical projections (RSP) is of primary importance in many different problems for example pattern recognition, image processing and data compression. We give a new algorithm which provides a reconstruction of convex polyominoes from horizontal and vertical projections. It costs atmost O(min(m, n) · mn log mn) for a matrix that has m × n cells. In this paper we provide just a sketch of the algorithm.
منابع مشابه
The Reconstruction of Polyominoes from Approximately Orthogonal Projections
The reconstruction of discrete two-dimensional pictures from their projection is one of the central problems in the areas of medical diagnostics, computer-aided tomography, pattern recognition, image processing, and data compression. In this note, we determine the computational complexity of the problem of reconstruction of polyominoes from their approximately orthogonal projections. We will pr...
متن کاملReconstruction of convex polyominoes from orthogonal projections of their contours
The problem of reconstructing a convex polyominoes from its horizontal and vertical projections when the projections are defined as the number of cells of the polyomino in the different lines and columns was studied by Del Lungo and M. Nivat (cf [7]). In this paper we study the reconstruction of any convex polyomino when the orthogonal projections are defined as the contour length of the object...
متن کاملTomographical aspects of L-convex polyominoes
Our main purpose is to characterize the class of L-convex polyominoes introduced in [3] by means of their horizontal and vertical projections. The achieved results allow an answer to one of the most relevant questions in tomography i.e. the uniqueness of discrete sets, with respect to their horizontal and vertical projections. In this paper, by giving a characterization of L-convex polyominoes,...
متن کاملReconstruction of 2-convex polyominoes
There are many notions of discrete convexity of polyominoes (namely hvconvex [1], Q-convex [2], L-convex polyominoes [5]) and each one has been deeply studied. One natural notion of convexity on the discrete plane leads to the definition of the class of hv-convex polyominoes, that is polyominoes with consecutive cells in rows and columns. In [1] and [6], it has been shown how to reconstruct in ...
متن کاملThe Number of Line-Convex Directed Polyominoes Having the Same Orthogonal Projections
The number of line-convex directed polyominoes with given horizontal and vertical projections is studied. It is proven that diagonally convex directed polyominoes are uniquely determined by their orthogonal projections. The proof of this result is algorithmical. As a counterpart, we show that ambiguity can be exponential if antidiagonal convexity is assumed about the polyomino. Then, the result...
متن کامل